BLOG main image
FunnyPR (32)
OpenGL (20)
PatternRecognition (7)
Tips (2)
XML (1)
DataMining (1)
Visitors up to today!
Today hit, Yesterday hit
daisy rss
tistory 티스토리 가입하기!
2014. 4. 25. 19:41

■ Neural Networks: Data normalization


http://www.cs.sunysb.edu/~cse634/ch6NN.pdf

뉴럴 네트워크에서는 입력과 출력 데이터의 정규화가 필요하다. 위 사이트에 보면 데이터 정규화 방법으로 두개가 나와 있다. 


All values of attributes in the dataset has to be changed to contain values in the interval [0,1], or [-1,1].

모든 데이터는 0~1, -1~1 사이 값에 포함되도록 바꿔야 한다. 


Two basic normalization techniques:

- Max-Min normalization

- Decimal Scaling normalization 


Max-Min normalization formula



Example: We want to normalize data to range of the interval [0,1].

We put: new_max A=1, new_min A  = 0


Say, max A was 100 and min A was 20(That means maximum and minimum values for the attribute A).


Now, if v=40(if for this particular pattern, attribute value is 40), v' will be calculated as, 

v'=(40-20)*(1-0)/(100-20)+0

   = (20 * 1)/80

   = 0.4(?) 아닌거 같은데... 0.25 아닌가?!!


Decimal Scaling Normalization formula


where j is the smallest integer such that max|v’|<1.


Example :

A–values range from -986 to 917. Max |v| = 986.

v = -986 normalize to v’= -986/1000 = -0.986